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ABSTRACT  
 

We developed a stochastic version of MODFLOW, referred to as MODFLOW-STO, for simulating flow in 
saturated, randomly heterogeneous porous media. The model is on the basis of an innovative 
combination of Karhunen-Loéve decomposition, polynomial expansion, and perturbation methods. The 
log conductivity (lnK) field is first decomposed using the Karhunen-Loéve expansion. The head h is then 
decomposed with a perturbation expansion as the sum of h(m), m = 0, 1,  …, where h(m) represents the mth 
head in , the standard deviation of lnK. Term hYσ

(m) is further expanded into a polynomial series of m 
products of orthogonal standard Gaussian random variables whose coefficients  are deterministic 
and can be solved recursively from low to high orders. All equations for these coefficients share the 
exactly same structure with the original flow equation, which allows us to use any existing groundwater 
simulator, such as MODFLOW-2000, to quantify flow uncertainties. The means and variances of head 
and flux are calculated using simple algebraic operations on . In the current version of 
MODFLOW-STO, h
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(m) is solved up to the third order in Yσ . The model has been tested under a wide 

range of flow conditions against the classical Monte Carlo simulations (MCS). Results indicate that 
MODFLOW-STO is capable of providing accurate solutions and requires much less computation effort as 
compared to the MCS analysis. With MODFLOW-STO, subsurface flow uncertainty can be quantified 
under field conditions in an efficient, effective manner. 
 

INTRODUCTION  
 
It has been long recognized that subsurface flow modeling is usually associated with uncertainties. In a 
field geologic setting, the lithologic, petrophysical and structural components often vary in such a dramatic 
way that cannot be predicted deterministically. Thus, the parameters (e.g., hydraulic conductivity, etc.) 
measured at selected locations represent each point specifically whose value depends on measuring 
scale as well as measuring procedures. To extend these values to those areas where measurements are 
not available introduces a great deal of uncertainty. Furthermore, the measurement data themselves are 
often corrupted by experimental and interpretive errors. These errors and uncertainties render the 
parameters and corresponding flow modeling to be stochastic instead of deterministic. To address 
subsurface flow problems under uncertainties, many stochastic approaches have emerged in the past two 
decades (Zhang, 2002). Current stochastic methods can be categorized as Monte Carlo simulations 
(MCS) or the moment equation (ME) approach. The MCS is straightforward conceptually but suffers from 
a heavy computational burden. Analytical solutions of the ME approach require strong simplifying 
assumptions and are typically not applicable for realistic problems. The computational effort in the 
numerical ME approach increases dramatically with the problem dimensions and is thus limited in its 
applicability under field conditions. 
 
In this work we adopt a new approach proposed by Zhang and Lu (2004), called the Karhunen-Loéve 
decomposition-based Moment Equation (KLME), and integrate it with the USGS model MODFLOW-2000 
(MF2K, Harbaugh et al., 2000). The resulting model is referred to as MODFLOW-STO. In this model, we 
first expand the log conductivity (lnK) field into a series in terms of orthogonal standard Gaussian random 
variables with their coefficients obtained as the eigenvalues and eigenfunctions of the covariance function 
of lnK. The head h is then decomposed with a perturbation expansion as the sum of h(m), m = 0, 1, …, 
where h(m) represents the mth-order head in terms of , the standard deviation of lnK. The mYσ

th-order 
head h(m) is further expanded into a polynomial series of m products of orthogonal standard Gaussian 



random variables whose coefficients  are deterministic and can be solved sequentially from low to 
high orders. All equations for these coefficients share the exactly same structure with the original flow 
equation, which allows us to use MF2K as a solver directly without major modifications. The statistic 
moments (the means and variances) of flow quantities can then be calculated from these coefficients. 
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METHODOLOGY  

 
Governing Equations  
 
Within the MODFLOW-2000 context, the governing equation for groundwater flow under water-table 
conditions can be written as, 
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where  is the hydraulic conductivity; h is the hydraulic head;  is the 
saturated thickness;  is the bottom elevation of the water-table layer; g

)(xsK 1),(),( BOTththB −= xx
1BOT u is the sink/source term 

applied to the water-table layer (e.g., recharge); Sy is specific yield;  is a vector of spatial Cartesian 
coordinate; t  is time; and  is defined as

x
xy∇ ),( yx ∂∂∂∂ . Note that when  is zero,  reduces 

to . 

1BOT ),( thB x

),( th x zthKs ∂∂ ),()( xx  represents the Darcy’s flux between the water-table and underlying confined 
layers in the vertical direction. For the underlying confined portions, the governing equation is written as, 
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where gc (1/T) is the sink/source that is applied to the confined portions; Ss is the specific storage; and ∇  
stands for ),,( zyx ∂∂∂∂∂∂ . The coupled equations (1) and (2) are solved simultaneously along with 
appropriate initial and boundary conditions. In the study  is taken as a random function and all 
other parts of the flow model are assumed to be deterministic. Our goal here is to solve for the mean 
heads and fluxes and the associated uncertainty expressed in terms of variances.  
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Karhunen-Loéve (KL) Decomposition of Hydraulic Conductivity Field 
 
Let . Its covariance function , where the perturbation  
is defined as  and 
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><−= )()()(' xxx YYY ><  represents the mean operator, is positive definite. The basic 

idea of the KL decomposition is to decompose the covariance function  as, ),( 21 xxYC
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where λn and fn(x) are eigenvalues and deterministic eigenfunctions, respectively. The mean-removed 
term  can be expanded in terms of λ)(' xY n and fn(x), 
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where nξ  are the orthogonal standard Gaussian random variables. Since eigenvalues λn and their 
eigenfunctions fn(x) always appear together, in the following derivations, we define new functions 

)()(~ xx nnn ff λ=  and then the tilde over fn is dropped for simplicity. 
 
Karhunen-Loéve Decomposition-Based Moment Equations (KLME) 
 
In the KLME approach, head is first decomposed with a perturbation expansion as, 
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where  is m),()( th m x th-order head in terms of , the standard deviation of log hydraulic conductivity. 
Substituting (5) and Taylor expansion of  into (1) – (2), collecting terms at different expansion 
orders, and then dropping the spatial and temporal indices for simplicity, one obtains,  
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and in general at mth-order, m ≥ 1, 
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and  is the geometric mean of . Instead of working on the above equations 
directly in previous ME approaches (Zhang and Lu, 2002), in the KLME scheme we further expand 
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where are deterministic functions to be determined; i)(
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h L 1, i2, …, im are referred to as modes at the mth 

order. Substituting (12) and (4) into (8) – (11) and dropping the independent set }...{
21 miii ξξξ , one obtains, 
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Equations (6), (7), (13), and (14) have been formulated in the same structure as the original flow 
equations such that MF2K can be directly applied as the solver. Solving these equations is a sequential 
process as higher-order g terms (implemented using the well package in MF2K) depend on lower-order 
solutions (Figure 1). The appropriate solution procedure is: 1) at the current time step, solving the zeroth-
order equations, 2) solving (13) and (14) for  at m = 1, 2, 3, …, recursively for different modes i)(

21

m
iii m

h L 1, i2, 
…, im, 3) computing the means and variances of heads and fluxes, and 4) adding a time increment and 
repeat steps 1) – 3), if needed. The mean heads and head variances are calculated as [Zhang and Lu, 
2004], 
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where the first term on the right-hand side of >< h  is the zeroth-order mean head solution and the 
second term represents the second-order corrections; for  the first term is the head variance up to the 

first order in , and the second and third terms represent the second-order corrections. Flux statistics 
can be computed in a similar manner (Lu and Zhang, 2004). 
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Compared to the conventional ME approach, the KLME method has two distinctive advantages. First, 
unlike the conventional ME approach, the KLME method does not require solving directly the covariance 
equations such as head covariances and head-permeability cross covariances, whose computations are 
proportional to the number of model dimensions (N), thereby significantly reducing the computational 
efforts especially for large-scale problems. Second, as demonstrated in the above derivations, higher-
order terms can be easily incorporated into the KLME method. The conventional ME approach usually 
approximates the covariance of flow quantities only up to the first order in  because the computational 
burden increases drastically when higher-order corrections are implemented. For instance, to obtain the 
hydraulic head variance up to second-order in , one needs to solve equations for terms such as 

, which generally requires solving the partial differential equations for N
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The MODFLOW-STO model developed in this study is validated 
and its efficiency and accuracy have been demonstrated with 
comparisons to traditional MCS in a series of hypothetical numerical 
experiments. In this section we present a 3-D unconfined flow 
example in which a total of 5000 realizations are used in the MCS; 
in the KLME method, the number of modes at the first three orders 
is 100, 20 and 10, respectively, resulting in a total of 1 (zeroth-order) 
+ 100 (first-order) + 210 (second-order) + 220 (third-order) = 531 
model simulations. 
 
Problem Description  
 
The schematic diagram of model setup is shown on Figure 2. A 
cuboid of 30 m × 10 m × 9 m is uniformly discretized into a block-
centered finite-difference mesh of 121 columns by 40 rows by 3 
layers. The size of each cell is 0.25 m × 0.25 m × 3 m. The western 
and eastern boundaries have constant heads of 8.5 m and 7.5 m, 
respectively. There is no flow across all other borders. A local 
recharge is applied at rate 0.3 m/d in a region of 10 rows by 30 
columns (x: 11.125 ~ 18.625 m; y: 3.75 ~ 6.25 m). Here the 
recharge rate is assigned a high value such that its effects can be 
demonstrated better. A well is located at the center of domain 
(column 61, row 21, and layer 2) and pumped at a rate of 3 m3/d.  
Transient simulation is conducted with Sy = 0.1 for the water-table 
layer and Ss =1.0E-4 for confined layers. The log conductivity field 
has a zero mean ( =1.0 m/d) and follows a separable exponential 

covariance function with variance  = 1.0 and correlation lengths 
GK

2
Yσ

xη  = yη  =  = 5.0 m.  zη Figure 1. Computational 
scheme for MODFLOW-STO  

 
 



Results and Discussions  

H = 
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No Flow
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No Flow

N
E   

R = 0.3 m/d  

Figure 2. Schematic Problem Setup

Figure 3 shows the means and variances of heads and fluxes 
calculated at the end of simulation from the KLME approach in 
MODFLOW-STO and the MCS. Results are shown along the 
20th row of top unconfined layer. Recharge and the pumping 
well have a big impact on flow statistics. For the mean heads 
and fluxes, the KLME and MCS results are in close agreement. 
For head variances, the first-order values calculated by KLME 
undershoot the MCS results in the vicinity of recharge, and 
adding second-order corrections improves solution accuracy 
significantly. For flux variances, there is a noticeable 
underestimation by the both orders of results in the KLME approach; nonetheless, the overall trend 
between KLME and MCS is consistent. It can be seen from this example that the KLME approach 
implemented in MODFLOW-STO can offer one order of magnitude reduction in the computation effort 
and yet is accurate in providing the stochastic flow solutions under general field conditions.   
  

CONCLUSIONS 
 
This paper has presented a stochastic version of MODFLOW, referred to as MODFLOW-STO, for 
simulating stochastic flow problems based on a Karhunen-Loéve decomposition based moment-equation 
(KLME) approach. The accuracy and efficiency of this model have been validated with comparisons to the 
classical Monte Carlo simulations (MCS) in a 3-D unconfined flow example. 
 

Figure 3. The means and variances of heads and fluxes calculated from KLME and MCS
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